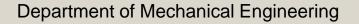

Team 511: Intrepid Hardtop

Juan Tapia John Karamitsanis Cory Stanley Erika Craft

Intrepid - Redesigned Hardtop Team 511

<u>Materials Engineer</u> Juan Tapia <u>Lead Engineer</u> John Karamitsanis Mechanical Design Engineer Cory Stanley Marine Design Engineer Erika Craft

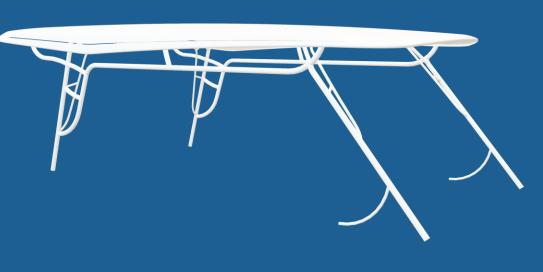
Erika Craft


Sponsors, Advisor, & Coordinator

<u>President</u> Ken Clinton V.P. of Engineering Richard Ahl Academic Advisor Dr. William Oates Senior Design Coordinator Dr. Shayne McConomy

Erika Craft

3


To improve the on-water performance of the Intrepid 409 Valor by manipulating hardtop parameters.

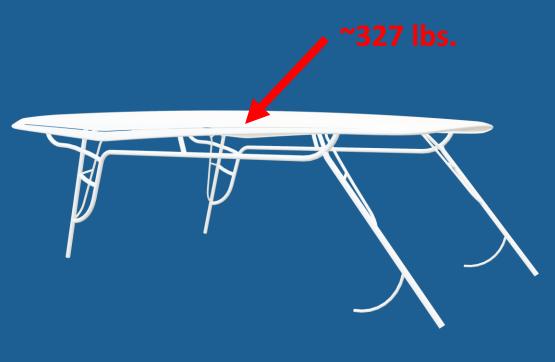
Erika Craft

4

Intrepid wants to improve vessel performance

The current hardtop is heavier than desired

Improving the hardtop can solve Intrepid's problem of improving performance



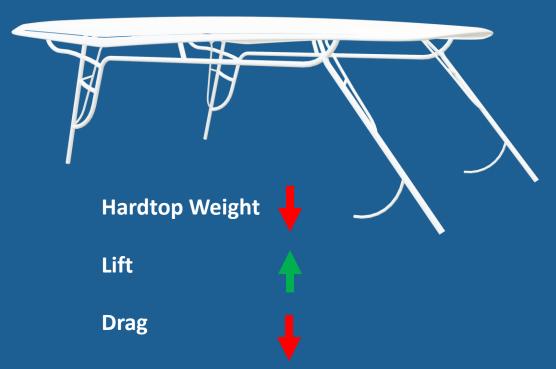
Erika Craft

Intrepid wants to improve vessel performance

The current hardtop is heavier than desired

Improving the hardtop can solve Intrepid's problem of improving performance

Erika Craft



Intrepid wants to improve vessel performance

The current hardtop is heavier than desired

Improving the hardtop can solve Intrepid's problem of improving performance

Erika Craft

7

Improve boat on water performance

Improve fuel efficiency

Analyze and enhance aerodynamics

Keep the design manufacturable

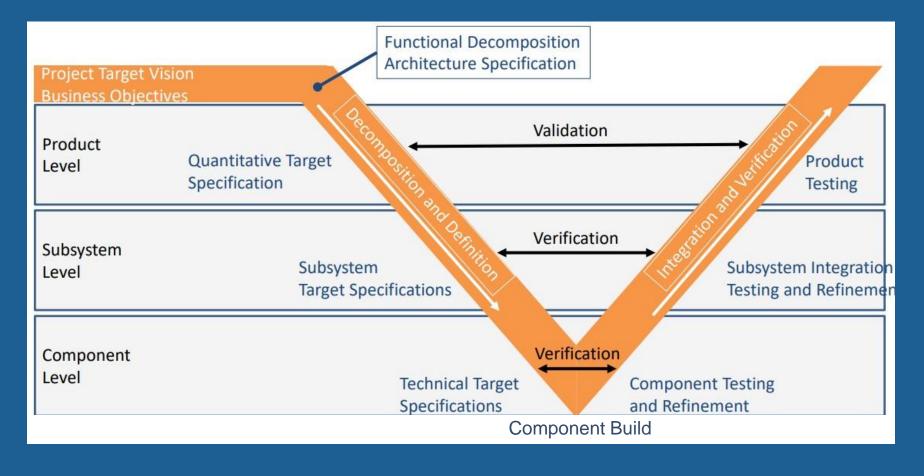
Erika Craft

8

25% Weight Reduction

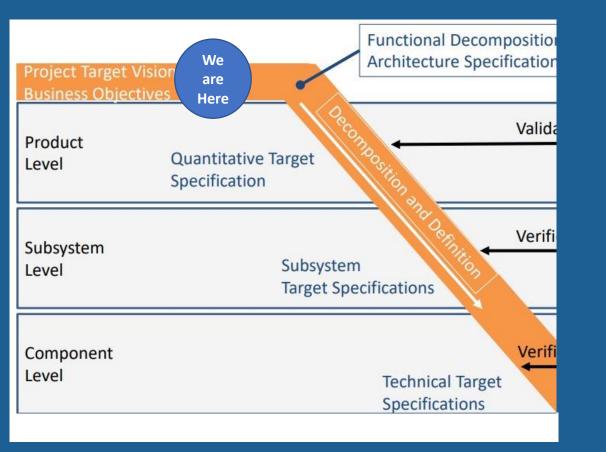
50% Weight Reduction

Key Goals


S% Cost Increase

25% Cost Increase

Erika Craft

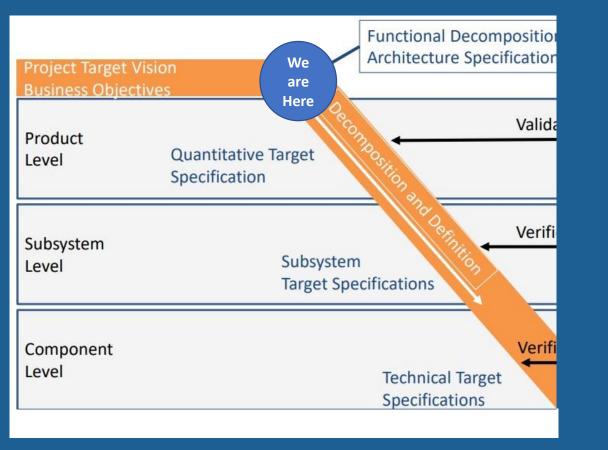


Erika Craft

Customer Needs:

Similar materials

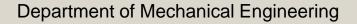
Same wire exit points


Retain manufacturability

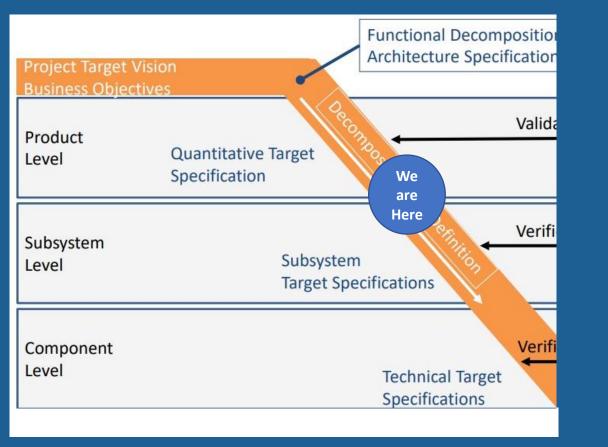
Withstand all loads and conditions

Erika Craft

11


Function Decomposition:

Aerodynamics: Control Airflow Combat Aerodynamic Load

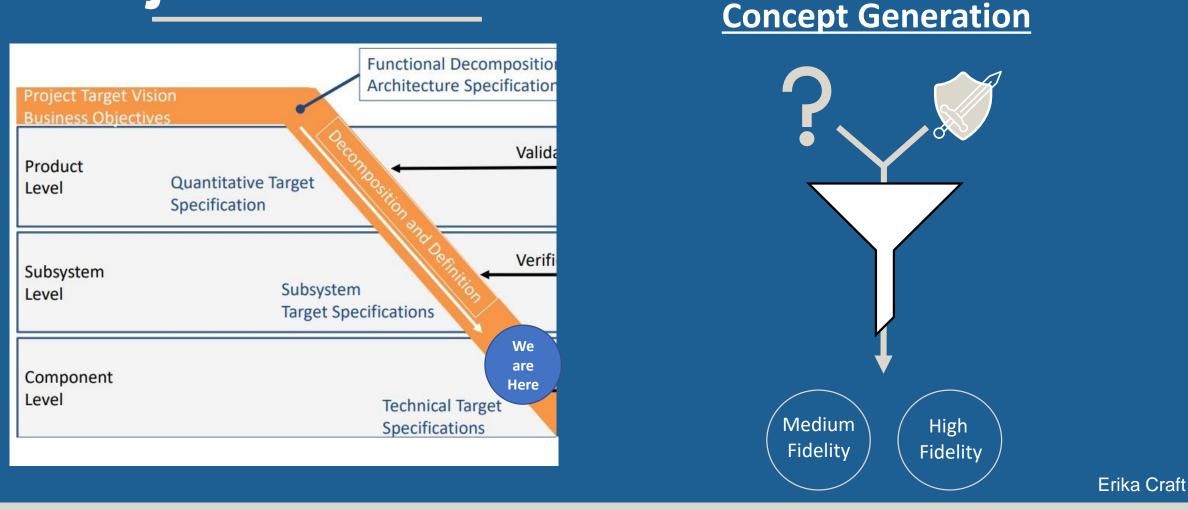

Materials: Resist Plastic Deformation Regulate Deflection

Support: Combat Aerodynamic Loads Support Needed Weight Resist Plastic Deformation Regulate Deflection

Erika Craft

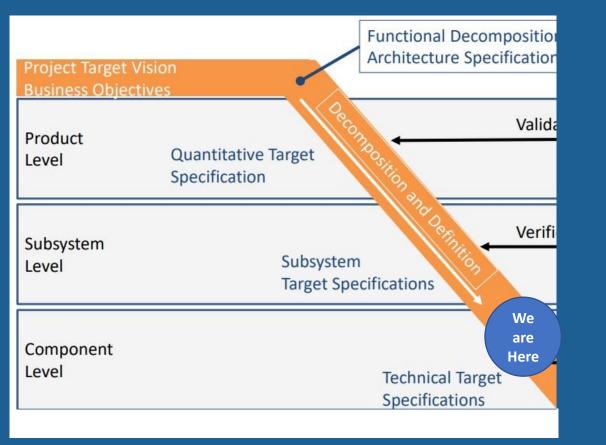
Targets:

Withstand Loads


Control Airflow

Support Weight

Erika Craft



13

14

Concept Selection

Erika Craft

MATERIALS

Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 ³⁄₄" core 1" core 1208 1 oz CSM

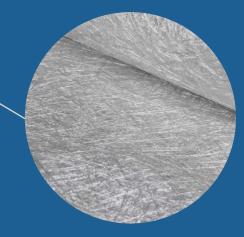
Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule

Gelcoat 1 oz CSM 1208 3⁄4" core 1" core 1208 1 oz CSM

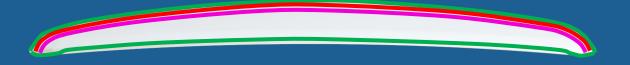
Juan Tapia


Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule

Gelcoat

1 oz CSM 1208 3⁄4" core 1" core 1208 1 oz CSM



Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 1 34" core 1208 1 oz CSM

Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 3⁄4" core -1" core 1208 1 oz CSM

Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 3⁄4" core 1" core 4 1208 1 oz CSM

Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 3/" core 1/" core 1208 -1 oz CSM

Juan Tapia

Changes can be made to the current lamination schedule for light-weighting

Current Lamination Schedule Gelcoat 1 oz CSM 1208 34" core 1208 1 oz CSM

Juan Tapia

Lamination Schedule Changes

Lamination Schedule

Material	Mat. Weight (lbs)
Gelcoat	16.36
1 oz Chopped Strand Mat	46.30
1208 Fiberglass	81.53
¾" Core	78.51
1" Core	104.68

Juan Tapia

25

Lamination Schedule Changes

Lamination Schedule

Material	Mat. Weight (lbs)
Gelcoat	16.36
1 oz Chopped Strand Mat	46.30
1208 Fiberglass	81.53
¾" Core	78.51
1" Core	104.68

- Surface Finish
- Waterproofing
- Mold Security

Also, least weight contribution

Juan Tapia

Lamination Schedule Changes

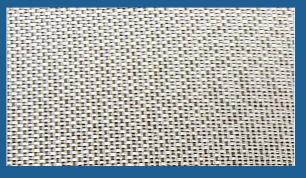
Lamination Schedule

Material	Mat. Weight (lbs)
1208 Fiberglass	81.53
¾" Core	78.51
1" Core	104.68

Juan Tapia

27

S-2 Fiberglass


- Low Density
- Low Resin Absorption
- Very Thin Fiberglass Sheets
- Excellent Strength to Weight Ratio
- Great Engineering Characteristics
- Water, chemical, corrosion, and environmental resistance

1208 Fiberglass —

→ S-2 Fiberglass

Fiberglass Engineering Characteristics

1208 Fiberglass

Tensile Strength(ksi)-> 270

Compressive Strength(ksi)--> 33.2

Shear Stress(ksi)--> 18.4

Flex. Ult. Strength(ksi)--> 35.6

S-2 Fiberglass

Tensile Strength(ksi)-> 681.

Compressive Strength(ksi)-> 580.2

Shear Stress(ksi)-> 507.0

Flex. Ult. Strength(ksi)-> 94.

Juan Tapia

29

Density -> 160.7 $\frac{lbs}{ft^3}$

Juan Tapia

30

Density -> 160.7 $\frac{lbs}{ft^3}$

Thickness -> 0.04 in.

Density -> 153.8 $\frac{lbs}{ft^3}$

Thickness -> 0.008 in.

Juan Tapia

31

Thickness -> 0.04 in.

Total Weight -> 81.5 lbs.

→ S-2 Fiberglass Density -> $153.8 \frac{lbs}{ft^3}$

Thickness -> 0.008 in.

Total Weight -> 21.6 lbs.

Juan Tapia

32

Density -> 160.7 $\frac{lbs}{ft^3}$

Thickness -> 0.04 in.

Total Weight -> 81.5 lbs.

Total Cost -> \$221

S-2 Fiberglass

Density -> 153.8 $\frac{lbs}{ft^3}$

Thickness -> 0.008 in.

Total Weight -> 21.6 lbs.

Total Cost -> \$393

Juan Tapia

33

1208 Fiberglass -----> S-2 Fiberglass

18.3% Weight Reduction

3.85% Cost Increase

59.9 lbs. saved

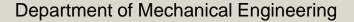
Juan Tapia

34

John Karamitsanis

35

Working with S-2 Glass Safety Hazards


<u>Exposure</u>

Symptoms & Health Risks

John Karamitsanis



Working with S-2 Glass

PPE Required:

Divinycell H-45

- Low Density
- High Stiffness to Weight Ratio
- Low Water Absorption
- Low Resin Absorption
- Excellent Strength to Weight Ratio
- Used for Marine Applications

Juan Tapia

Core Engineering Characteristics

Aircell T-100 Core

Tensile Strength(ksi)-> 1017

Compressive Strength(ksi)--> 1017

Shear Stress(ksi)--> 968.8

Flex. Ult. Strength(ksi)--> 966.2

Divinycell H-45

Tensile Strength(ksi)-> 1017

Compressive Strength(ksi)-> 1017

Shear Stress(ksi)-> 600

Flex. Ult. Strength(ksi)-> 966.2

Juan Tapia

Density -> 2.40
$$\frac{lbs}{ft^3}$$

Density -> 9.98
$$\frac{lbs}{ft^3}$$

Juan Tapia

41

Aircell T-100

Density -> 9.98
$$\frac{lbs}{ft^3}$$

Total Weight -> 183 lbs.

Divinycell H-45

Density -> 2.40 $\frac{lbs}{ft^3}$

Total Weight -> 45.2 lbs.

Juan Tapia

42

Aircell T-100

Density -> 9.98 $\frac{lbs}{ft^3}$

Total Weight -> 183 lbs.

Total Cost -> \$1154.96

Divinycell H-45

Density -> 2.40 $\frac{lbs}{ft^3}$

Total Weight -> 45.2 lbs.

Total Cost -> \$825.64

Juan Tapia

43

Aircell T-100 Divinycell H-45

42.7% Weight Reduction

7.70% Cost Decrease

140 lbs. saved

Juan Tapia

Total Weight Reduction

327 lbs. \longrightarrow <u>127 lbs.</u>

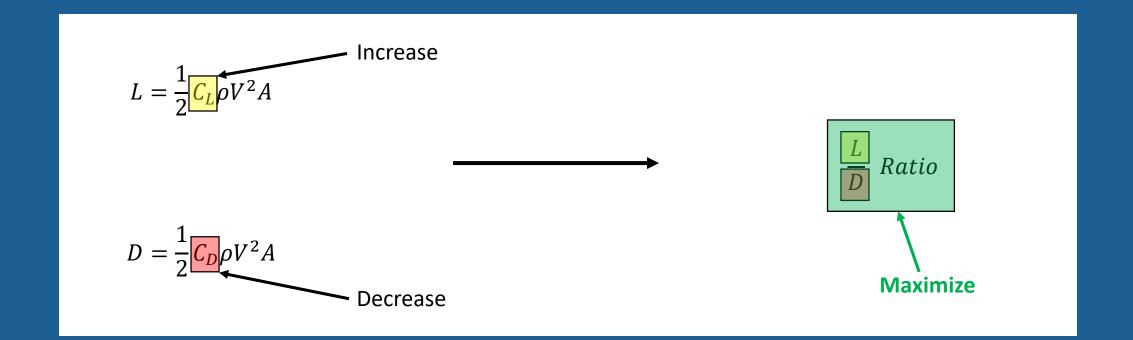
61% Weight Reduction

3.7% Cost Decrease

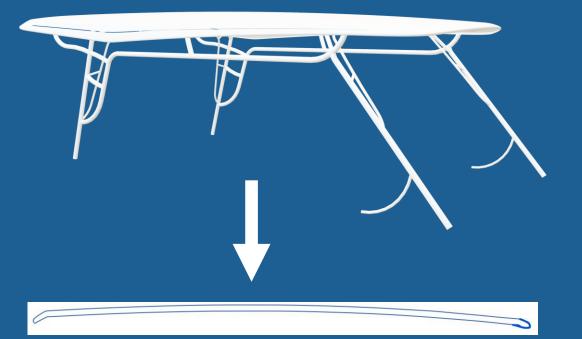
200 lbs. saved

1% decrease in overall vessel weight

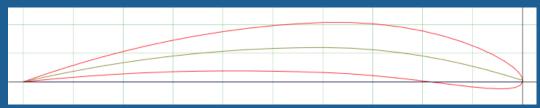
Juan Tapia

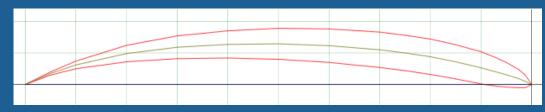

GEOMETRY CHANGES

John Karamitsanis


Aerodynamic Calculations

John Karamitsanis


Aerodynamic Calculations


Current hardtop cross-section

NACA 2412

NACA 6409

EPPLER 58

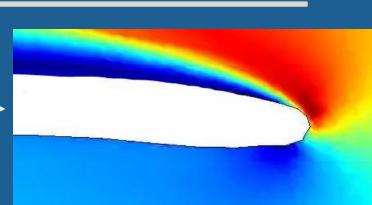
John Karamitsanis

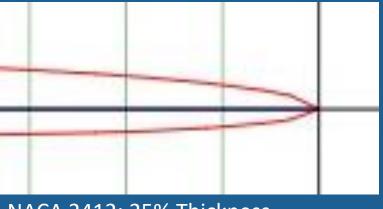
48

Aerodynamic Calculations

Current 409 Valor Hardtop Cross-section					
Cross-section tested at 70 mph (31.2928 m/s) in COMSOL at three different angles of attack.					
Angle of Attack, α (degrees)	0°	2.5°	5°		
Lift (N/m)	1131.9	2237.8	3241.5		
Drag (N/m)	32.498	49.169	142.84		

NACA 6409 Airfoil, 25% thickness cross-section					
Cross-section tested at 70 mph (31.2928 m/s) in COMSOL at three different angles of attack.					
Angle of Attack, α (degrees)	0°	2.5°	5°		
Lift (N/m)	646.66	1893.9	3129.3		
Drag (N/m)	12.826	51.620	194.58		


John Karamitsanis

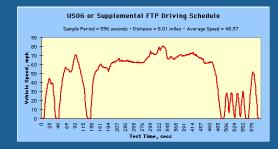


Edge Geometry Changes

Current Hardtop

NACA 2412; 25% Thickness

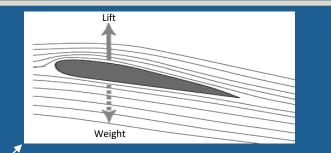
 U_0

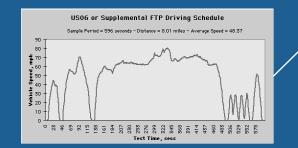

Department of Mechanical Engineering

SIMULATION

Cory Stanley

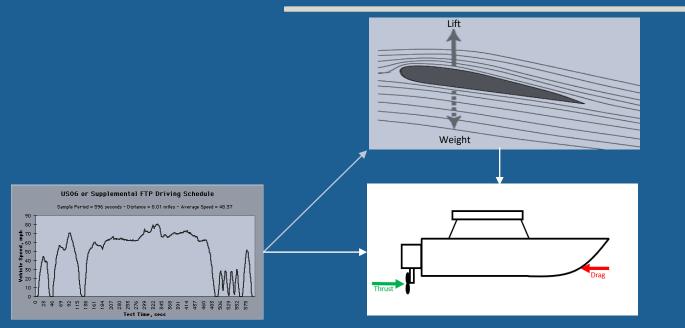
51





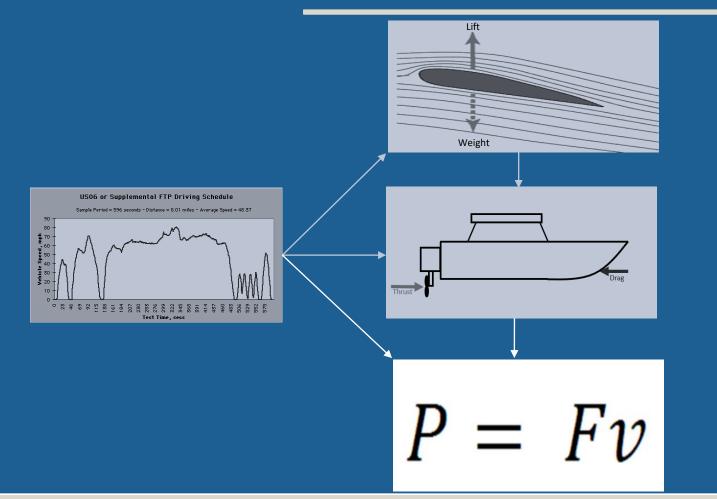
Cory Stanley

Department of Mechanical Engineering

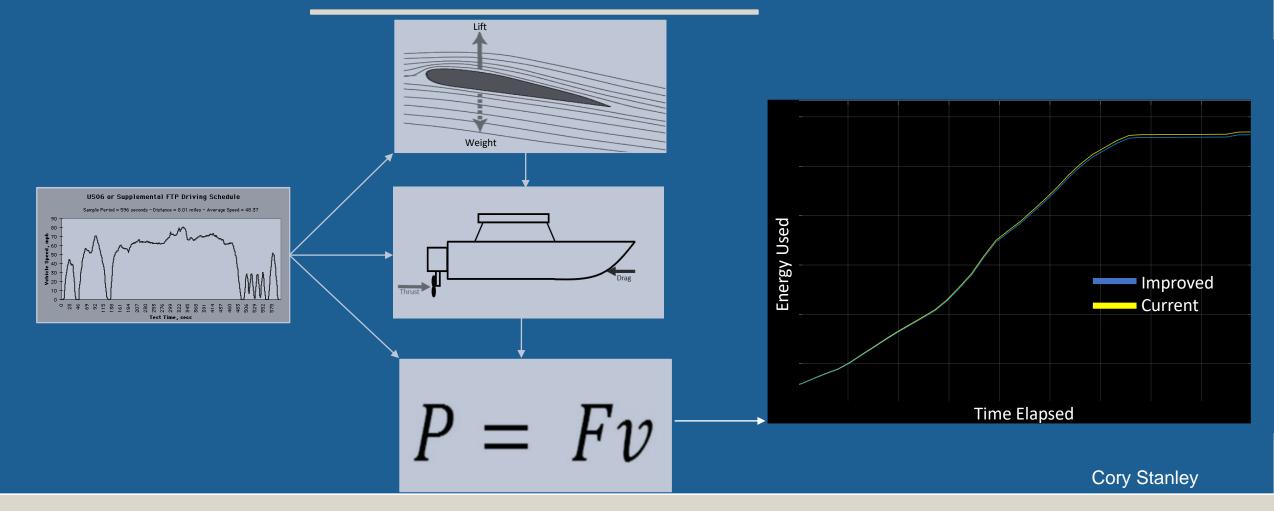


Cory Stanley

Department of Mechanical Engineering

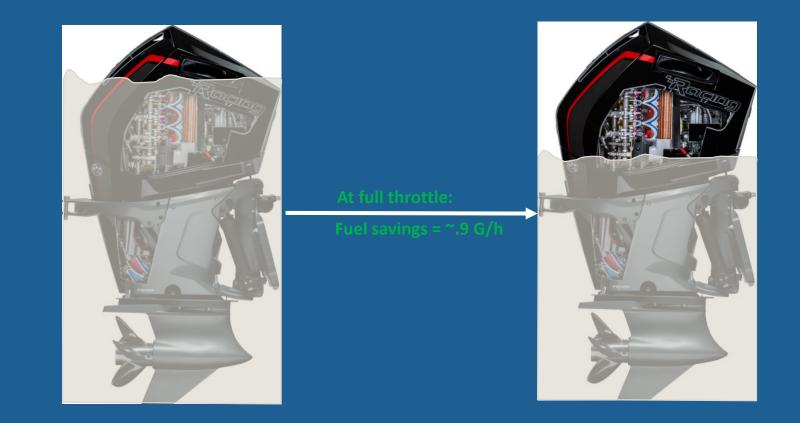


Cory Stanley

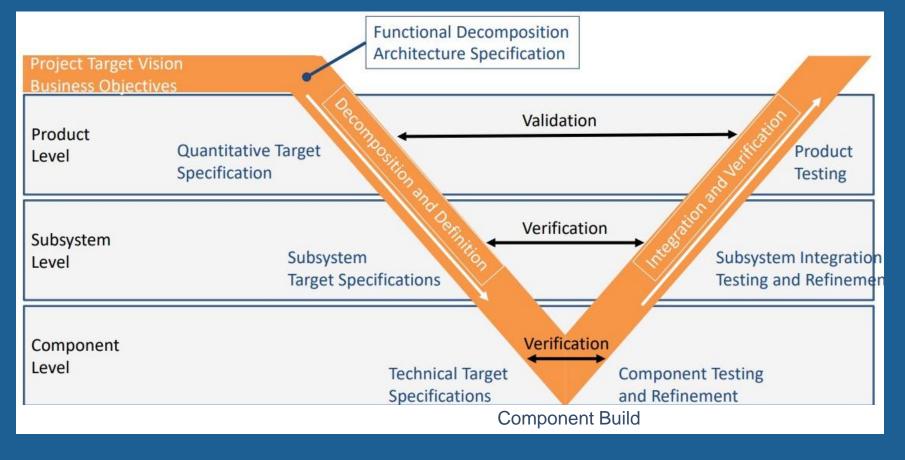




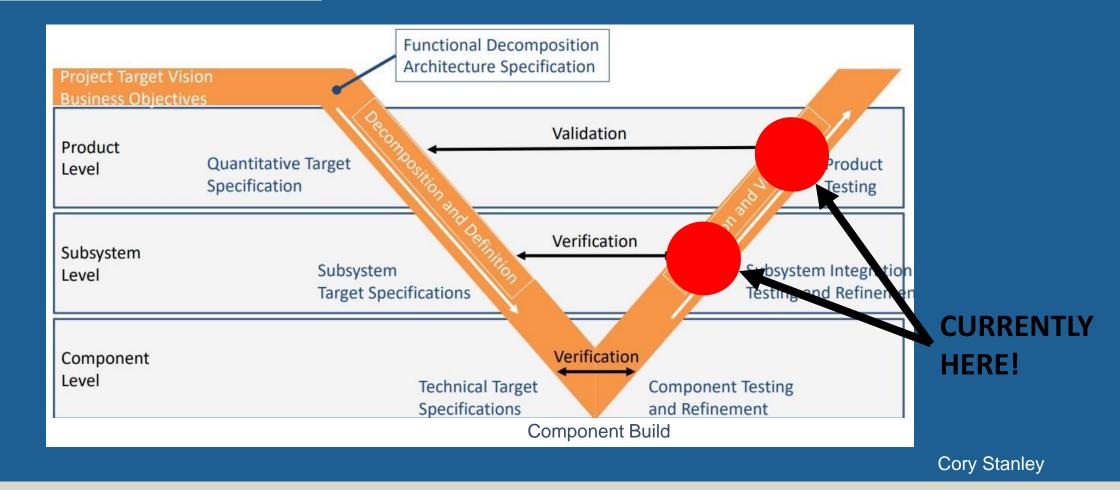
Cory Stanley

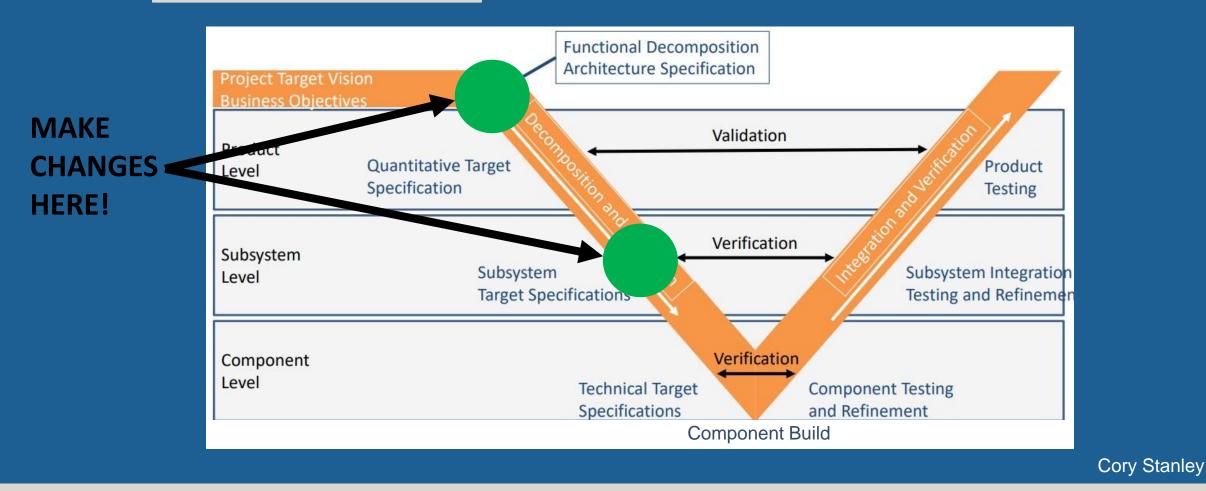


Cory Stanley

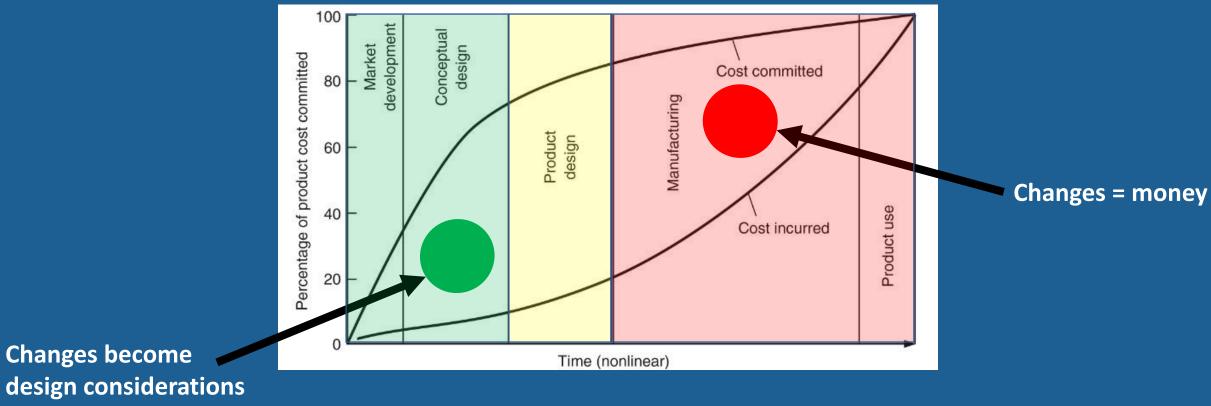


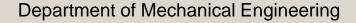
Cory Stanley


Department of Mechanical Engineering



Cory Stanley





Cory Stanley

Lessons Learned

- Follow the design process and design thinking
 - Cost-benefit analysis showed changes are more valuable early in the design process
 - While changes can be made to the current model to improve it, cost discourages one from making changes this late in the design process
- Reasonable assumptions OK, but try to do without
 - Starting weight reported as ~300 lbs., assumed core material allowed for starting weight of 327 lbs.
- Validation is important
 - The weight reduction achieved is large, materials must be validated
- Check calculations
 - Initial values for material engineering characteristics, densities, and costs incorrect, so checking against all group members allowed us to avoid reporting incorrect values

Cory Stanley

Summary

Objective: To improve the performance of the Intrepid 409 Valor by manipulating hardtop parameters

Switched fiberglass and core materials to achieve a 200 pound weight savings (60% overall hardtop weight)

Current hardtop geometry is desirable and can function to the boat's benefit

Analyzed current hardtop geometry and found overall geometry change is not beneficial; leading and trailing edge changes may reduce drag

Design and manufacturing cost can be reduced if changes are implemented when new model is made (i.e., cost to make changes now outweighs benefits)

John Karamitsanis

Department of Mechanical Engineering

College of Engineering

Erika Craft, Undergraduate Student, Materials Track

P: 561-227-9849 E: epc16@my.fsu.edu

FAMU-FSU College of Engineering

Department of Mechanical Engineering

Cory Stanley, Undergraduate Student, Aeronautics Track

P: 850-566-4472 E: cps18u@my.fsu.edu

Department of Mechanical Engineering

John Karamitsanis, Undergraduate Student, Thermal Fluids Track

P: 813-992-0152

E: jhk16c@my.fsu.edu

Department of Mechanical Engineering

Juan Diego Tapia, Undergraduate Student, Materials Track

P: 850-273-3139 E: jdt16b@my.fsu.edu

Backup Slides

Department of Mechanical Engineering

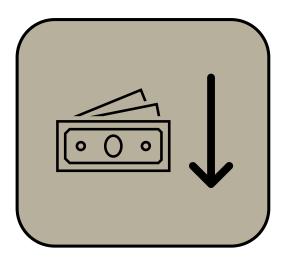
References

409 Valor. (n.d.). Retrieved October 15, 2020, from <u>https://www.intrepidpowerboats.com/boats/409-valor/</u>

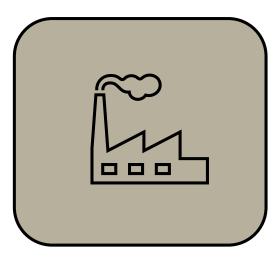
McConomy, S. (2020, October 6). Retrieved October 15, 2020, from <u>https://famu-fsu-eng.instructure.com/courses/4476/discussion_topics/18526</u>

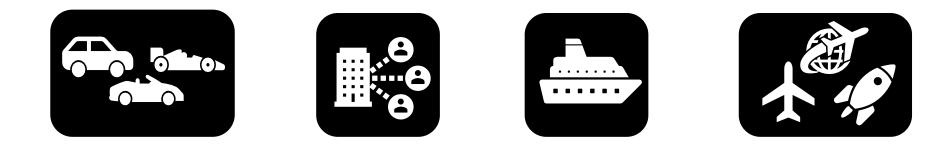
Tweedie, Dingo (2021, January 15). Retrieved from Savitsky Power Prediction | Page 6 | Boat Design Net

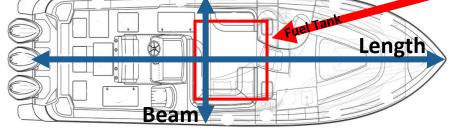
Knit, 1208 Biax (fiberglassflorida.com)


Chopped Strand Mat (fibreglast.com)

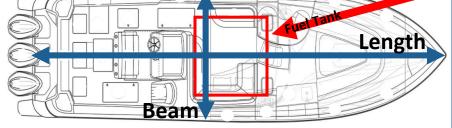
Gelcoat Product – Grainger Industrial Supply (grainger.com)


Foam Core Board, Uline Board (uline.com)


- The changes to the hardtop will still use current mounting points.
- Our changes will only be applied to the hardtop and no other parts of the vessel.
- We are assuming we will not be physically producing the hardtop



To improve the on-water performance of the Intrepid 409 Valor by manipulating hardtop parameters


Intrepid 40	<u>)9 Valor</u>
Length:	40' 0"
Beam:	11' 1"
Fuel Capacity:	438 Gallons
Top Speed:	70+ mph
Range:	

Erika Craft

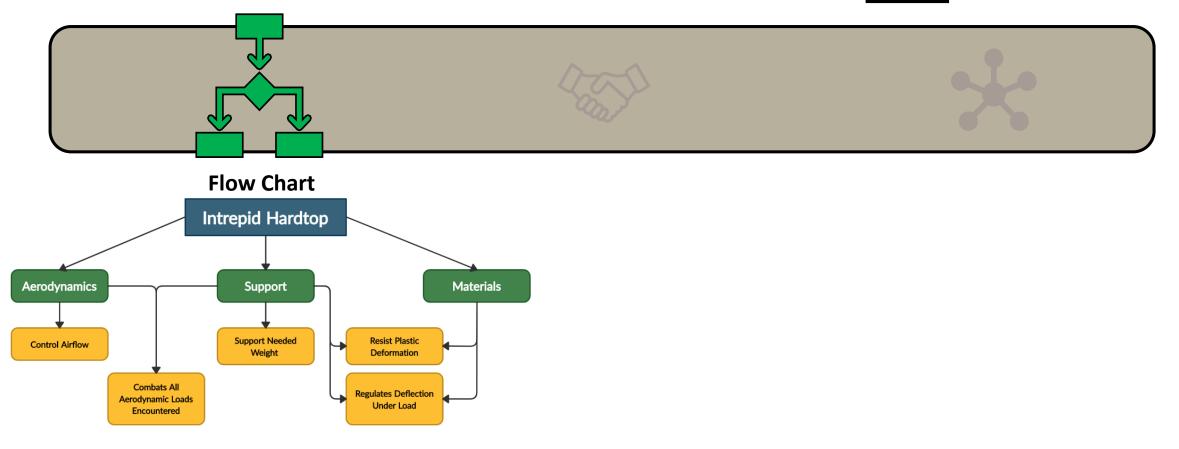
To improve the on-water performance of the Intrepid 409 Valor by manipulating hardtop parameters

Erika Craft

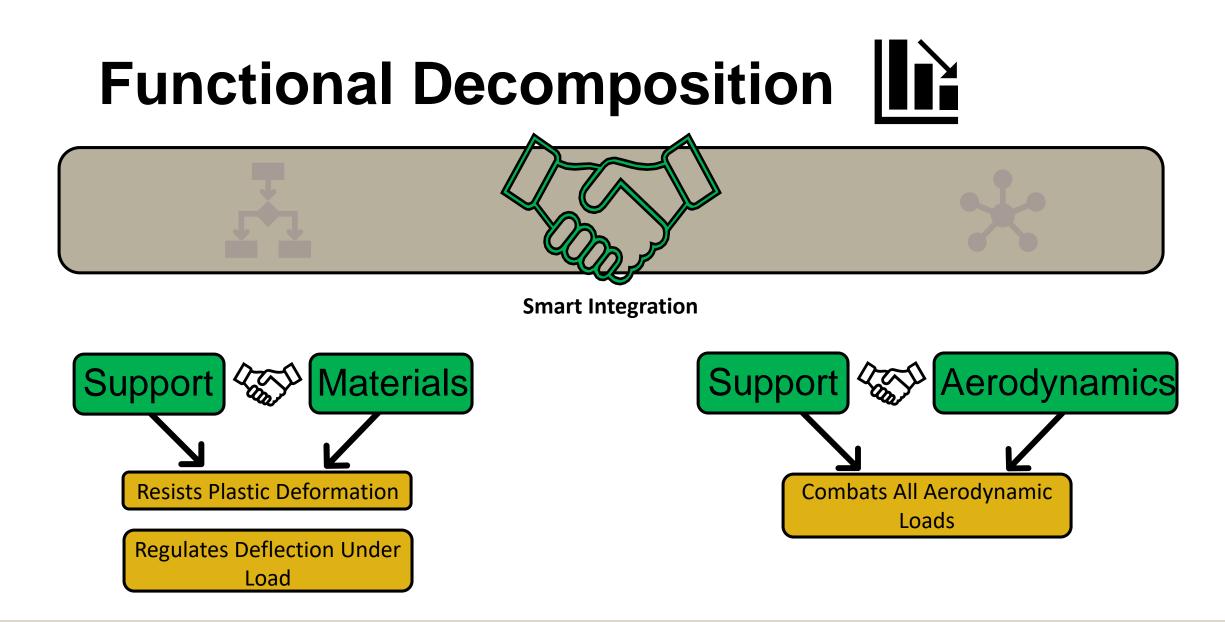
Customer Needs

Question What materials need to be considered? Parameters of the current hardtop? Can we alter wire/chase tube layout? Is there a certain weight the hardtop needs to withstand?

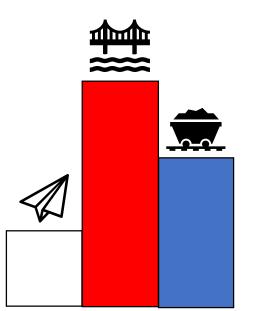
Incorporate materials used within Intrepid


Similar dimensions retained

Exit points must stay the same


Design withstands all nominal loads and running conditions

Functional Decomposition

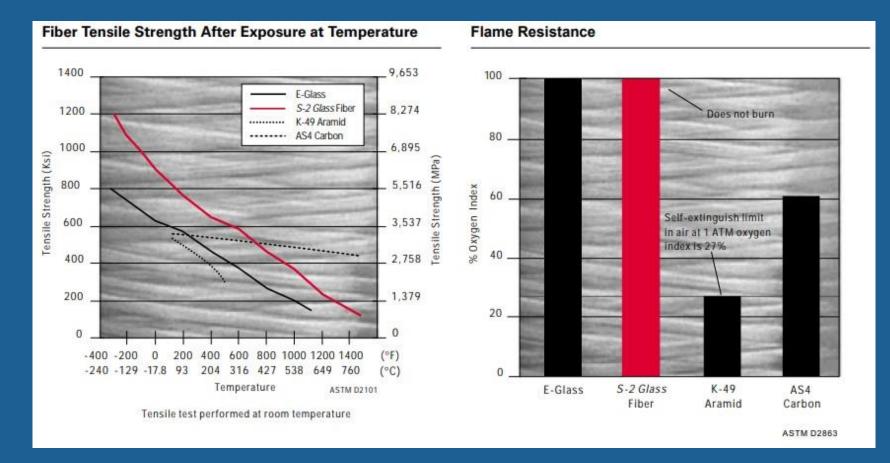


Functional Decomposition

Connection to Systems

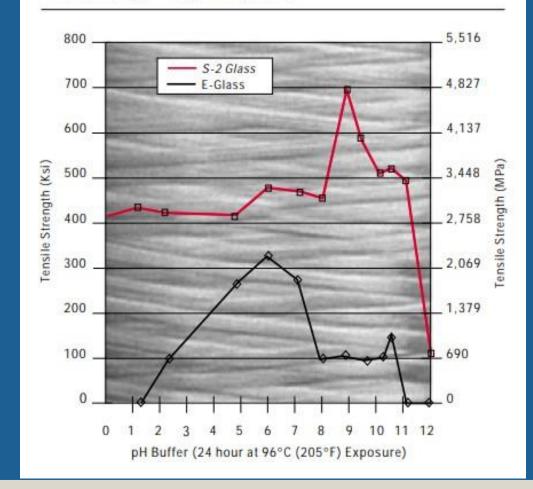
Highest number of functions Highest number of cross system functions

Most shared functions with support system



Least shared functions across systems

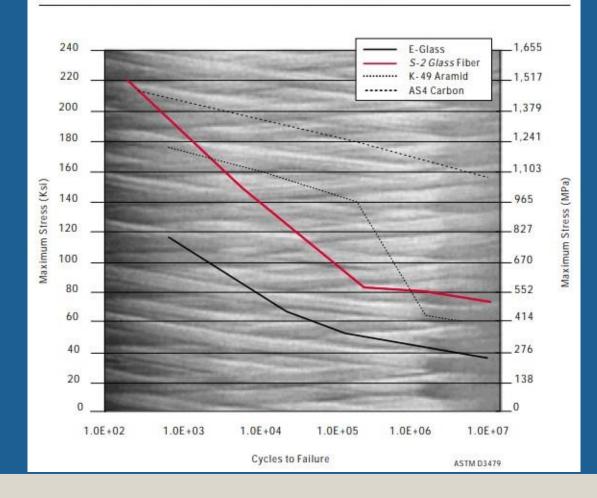
Fiberglass Change – S-2 Glass Temperature Resistance



Juan Tapia

Fiberglass Change

Fiber Strength vs. pH Exposure


John Karamitsanis

77

Fiberglass Change

Unidirectional Tension – Tension (R=0.05) Applied Maximum Fatigue Stress and Fatigue Life of Epoxy Composites

John Karamitsanis

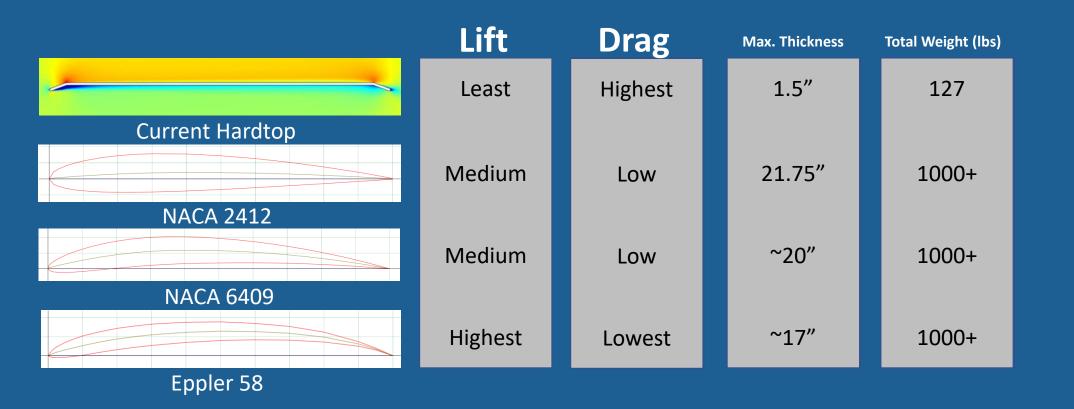
Department of Mechanical Engineering

Properties

		Lay-up, Top to Bottom	Fiber Conte	nt	Top Up/Dn	Rotation	Fiber Wt.	Layer	Fiber	Resin	Total	Fiber	Fiber	Kesiri	TUCAL	dayer	
=	ID	Product		vol / wt	u/d/m/h	deg.	oz/sq.yd	Thickness	lb/sq.ft	lb/sq.ft	lb/sq.ft	\$/lb	\$/sq.ft	\$/sq.ft	\$/sq.ft	#	
-1 .	Ve	E-BXM 1208	44 %	Wt	Hom.	0	20.64	0.040	0.14	0.18	0.324	\$-	\$ -	\$ -	\$ -	1	
2.				Wt	Hom.	0	1	-	14 July 14	•		\$-	\$ -	\$ -	\$-		
3.			(Wt	Hom.	0	÷	84 4 3	- i i i i i i i i i i i i i i i i i i i	8448 1	14	\$-	\$ -	\$ -	\$-		
4.	1		(14)	Wt	Hom.	0	-	() - -)	-	1960		\$-	\$-	\$ -	\$		
5.			(H)	Wt	Hom.	0				3		\$-	\$-	\$ -	\$		
6.		0	(17).	Wt	Hom.	0		21 0 2		19 19	i.	\$-	\$ -	\$ -	\$-	2	
7.	8		2.0 0 1	Wt	Hom.	0		2070	(. .)	252)	\$-	\$-	\$-	\$-		
8.		10		Wt	Hom.	0	7	81 7 0				\$-	\$ -	\$-	\$-		
9.	ļ.	10	12	Wt	Hom.	0	2	32 <u>2</u> 3	2	50		\$-	\$ -	\$-	\$-		
10.	Ļ		1949 (Mar)	Wt	Hom.	0	<u> </u>	3422	<u> </u>	199	<u> </u>	\$-	\$-	\$ -	\$-		
11.	1		823	Wt	Hom.	0	14	9,225	1.12	843	14	\$-	\$-	\$-	\$-		
12.	í.	45	(/=)	Wt	Hom.	0	8	(-)		9882		\$-	\$ -	\$-	\$ -		
13.	1		300	Wt	Hom.	0		(.)	1 (B)	1985		\$-	\$-	\$-	\$ -	s. 69	
14.	11 1	10	61 1 0	Wt	Hom.	0	×.	8. 4 8.	1	879	×	\$-	\$-	\$-	\$-	() () () () () () () () () ()	
15.	8		1.5%	Wt	Hom.	0		0.75		358	(.)	\$-	\$-	\$-	\$-		
16.	e.	¢	4. MEA	Wt	Hom.	0		0.5%		100		\$-	\$-	\$-	\$-	5	
17.		.0. ·		Wt	Hom.	0		124	<u> </u>	1993	. 2 I	\$-	\$ -	\$ -	\$-		
18.	Ļ		9 <u>5</u> 0	Wt	Hom.	0		120	. 2	1949	<u> </u>	\$-	\$-	\$-	\$-	·	
19.	[(448) (448)	Wt	Hom.	0	14	8,23	3 4	84.8	14	\$-	\$-	\$-	\$-		
20.	1			Wt	Hom.	0		()	-	375	-	\$-	\$-	\$-	\$-		
		in this table by clicking on an				aminate :	20.6	0.040	0.143	0.18	0.32	Lam :	\$ -	\$ -	\$ -	1	# Layers
		aviating approximate a locating a			C	/ Calida .							A	#/lb +	\$ -		Adjustment
		existing name and selecting a			Core	/ Solids :	-	(i=)	Same There are a			Core:	\$ -	\$/lb :	р -		Aujustment
		property from the list that pops up.			Core	Total :	20.6	0.040	0.143			Core:	<u>ې</u> -	j \$/ID :[ф -		Aujustment
		property from the list that pops up. Laminate Comparison Table	Table Units:	US	Core	100 BES 1000 BE	to share and		Same There are a]		Core:	\$-	ן: טו/בָּ	р -		Aujustment
		property from the list that pops up. Laminate Comparison Table Laminate # ->	1			100 BES 1000 BE	to share and		Same There are a]		Core:	\$-] \$/ID :[\$-		Aujustment
Ξ		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate	1 Current Laminate			100 BES 1000 BE	to share and		Same There are a]		Core:	<u>۶-</u>	j \$/iD∶[φ-		Aujustment
Ξ		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness	1 Current Laminate 0.040			100 BES 1000 BE	to share and		Same There are a			Core:	\$] \$/10 : [φ-		in.
=		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf	1 Current Laminate 0.040 44.27 %			100 BES 1000 BE	to share and		Same There are a			Core:		j \$/ID : [<u>.</u> ф		in. by Wt.
=		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density	1 Current Laminate 0.040 44.27 % 97.7			100 BES 1000 BE	to share and		Same There are a			Core:	\$	ן געו <i>י</i> יני (- -		in. by Wt. lb/cu.ft
=		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density Fiber Wt.	1 Current Laminate 0.040 44.27 % 97.7 0.14			100 BES 1000 BE	to share and		Same There are a			Core:	φ	ן געו <i>ו</i> ק .			in. by Wt. lb/cu.ft lb/sq.ft
=		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density Fiber Wt. Resin Wt.	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18			100 BES 1000 BE	to share and		Same There are a			Core:	\$-	ן געו <i>ו</i> ק .			in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft
-		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt.	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32			100 BES 1000 BE	to share and		Same There are a			Core:		ן געו <i>י</i> ק (- P		in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft Ib/sq.ft
-		property from the list that pops up. Laminate Comparison Table Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 %			100 BER 1000 BE	to share and		Same There are a			Core:		ן געו <i>י</i> ק (in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft Ib/sq.ft by Vol.
-		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf O° Modulus, Ex	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45			100 BER 1000 BE	to share and		Same There are a			Core:		ן געו <i>ו</i> קר (9 -		in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft b/sq.ft by Vol. MSI
=		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ey	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45			100 BER 1000 BE	to share and		Same There are a			Core:	<u><u> </u></u>	ן: טוזיג 	ð -		in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft Ib/sq.ft by Vol.
-		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ey Poisson Ratio, PRxy	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45 1.45 0.37			100 BER 1000 BE	to share and		Same There are a			Core:	<u><u></u></u>		æ -		in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft Ib/sq.ft by Vol. MSI MSI
=		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ey	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45			100 BER 1000 BE	to share and		Same There are a			Core:	<u><u></u></u>	3 \$/10 :[ф -		in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft b/sq.ft by Vol. MSI
=		property from the list that pops up. Laminate Comparison Table Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ey Poisson Ratio, PRxy Shear Modulus, Gxy	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45 0.37 0.81			100 BES 1000 BE	to a Stream		Same There are a			Core:	<u> </u>		ф -		in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft Ib/sq.ft by Vol. MSI MSI
-		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate # -> Laminate # -> Laminate Wt. Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ey Poisson Ratio, PRxy Shear Modulus, Gxy 0° Ten. Ult. Stress	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45 1.45 0.37 0.81 23.8			100 BES 1000 BE	to a Stream		Same There are a			Core:	<u><u></u></u>		\$ -		in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft by Vol. MSI MSI MSI KSI
-		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate # -> Laminate # -> Laminate Wt. Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ey Poisson Ratio, PRxy Shear Modulus, Gxy 0° Ten. Ult. Stress 0° Comp. Ult. Stress	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45 1.45 0.37 0.81 23.8 33.2			100 BES 1000 BE	to a Stream		Same There are a			Core:	<u><u></u></u>		æ -		in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft Jby Vol. MSI MSI MSI KSI KSI
=		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ex 90° Modulus, Ey Poisson Ratio, PRxy Shear Modulus, Gxy 0° Ten. Ult. Stress 90° Ten. Ult. Stress 90° Ten. Ult. Stress	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45 1.45 0.37 0.81 23.8 33.2 23.8			100 BES 1000 BE	to a Stream		Same There are a			Core:	<u><u></u></u>		æ -		in. by Wt. Ib/cu.ft Ib/sq.ft Ib/sq.ft Jb/sq.ft MSI MSI MSI MSI KSI KSI KSI
=		property from the list that pops up. Laminate Comparison Table Laminate # -> Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ex 90° Modulus, Ex 90° Modulus, Ex 90° Ten. Ult. Stress 0° Comp. Ult. Stress 90° Comp. Ult Stress	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45 1.45 0.37 0.81 23.8 33.2 23.8 33.2			100 BES 1000 BE	to a Stream		Same There are a			Core:	<u><u></u></u>		\$ -		in. by Wt. lb/cu.ft lb/sq.ft lb/sq.ft by Vol. MSI MSI MSI MSI KSI KSI KSI KSI
=		property from the list that pops up. Laminate Comparison Table Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ey Poisson Ratio, PRxy Shear Modulus, Gxy 0° Ten. Ult. Stress 0° Comp. Ult. Stress 90° Comp. Ult. Stress 90° Comp. Ult. Stress Shear Ult. Stress	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45 0.37 0.37 0.81 23.8 33.2 23.8 33.2 23.8 33.2 18.4			100 BES 1000 BE	to a Stream		Same There are a				<u>></u> -		\$ -		in. by Wt. lb/cu.ft lb/sq.ft lb/sq.ft by Vol. MSI MSI MSI KSI KSI KSI KSI
		property from the list that pops up. Laminate Comparison Table Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ey Poisson Ratio, PRxy Shear Modulus, Gxy 0° Ten. Ult. Stress 0° Comp. Ult. Stress 90° Comp. Ult Stress Shear Ult. Stress 0° Flex. Ult. Stress	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45 0.37 0.81 23.8 33.2 23.8 33.2 23.8 33.2 18.4 35.6			100 BES 1000 BE	to a Stream		Same There are a			Core:	<u>></u> -		\$ -		in. by Wt. Ib/sq.ft Ib/sq.ft Ib/sq.ft by Vol. MSI MSI MSI KSI KSI KSI KSI KSI KSI
		property from the list that pops up. Laminate Comparison Table Laminate Thickness Mf Density Fiber Wt. Resin Wt. Laminate Wt. Vf 0° Modulus, Ex 90° Modulus, Ey Poisson Ratio, PRxy Shear Modulus, Gxy 0° Ten. Ult. Stress 0° Comp. Ult. Stress 90° Comp. Ult. Stress 90° Comp. Ult. Stress Shear Ult. Stress	1 Current Laminate 0.040 44.27 % 97.7 0.14 0.18 0.32 27.29 % 1.45 1.45 0.37 0.37 0.81 23.8 33.2 23.8 33.2 23.8 33.2 18.4			100 BER 1000 BE	to share and		Same There are a			Core:	<u><u></u><u></u></u>		\$ -		in. by Wt. lb/cu.ft lb/sq.ft lb/sq.ft by Vol. MSI MSI MSI KSI KSI KSI KSI

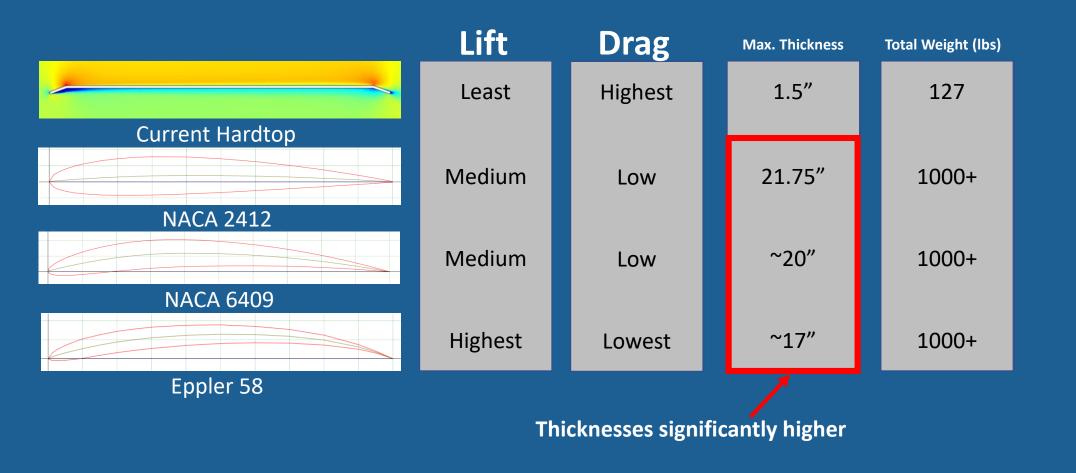
AIRCELL T-100 1"

		Lay-up, Top to Bottom	Fiber Conte	nt	Top Up/Dn	Rotation	Fiber Wt.	Layer	Fiber	Resin	Total	Fiber	Fiber		тосаг	dayer	
=	ID	Product		vol / wt	u/d/m/h	deg.	oz/sq.yd	Thickness	lb/sq.ft	lb/sq.ft		\$/lb	\$/sq.ft	\$/sq.ft	\$/sq.ft	#	
1.	Pol	Aircell T-100 - 1"	100 %	Wt	Hom.	0	119.84	1.000	0.83	123	0.832	\$-	\$ -	\$-	\$ -	1	
2.				Wt	Hom.	0	<u> </u>	2 - 2	, ²² ,	828	¥	\$-	\$-	\$-	\$-		
3.			8 - 6	Wt	Hom.	0	-	9. 4 0	-	846	-	\$-	\$-	\$-	\$-		
4.			9 4 9	Wt	Hom.	0	-	(1 4)		3963	8	\$-	\$ -	\$-	\$ -		
5.			-	Wt	Hom.	0	-	(-)		180		\$-	\$ -	\$ -	\$ -		
6.			852.	Wt	Hom.	0	-	89 5 5	87	8 7 9		\$-	\$ -	\$ -	\$ -		
7.			275	Wt	Hom.	0		25	8 17 8	358	8 32 P	\$-	\$ -	\$ -	\$ -		
8.		()		Wt	Hom.	0		253	0 27 3	1.50	3	\$-	\$ -	\$ -	\$ -	5 - E	
9.	4	19	97 <u>2</u> 0	Wt	Hom.	0		97 <u>2</u> 18	2 22	829) 	- 12 	\$-	\$ -	\$ -	\$ -	i ()	
10.	5		-	Wt	Hom.	0		11-11 11-11		120	<u> </u>	\$-	\$ -	\$ -	\$ -	; ×	
11.	-		-	Wt	Hom.	0	-	-	-	84-8	-	\$-	\$ -	\$ -	\$-		
12. 13.		10	-	Wt	Hom.	0	-	-	-	1.40	-	\$-	\$- ¢	\$ - ¢	\$-	. 6	
13.			-	Wt Wt	Hom.	0		(1)	-	1.70	-	\$- \$-	\$- \$-	\$- \$-	<u>\$</u> - \$ -		
14.	-	2	6172	Wt	Hom. Hom.	0	-	81 - 0	-	-	-	\$- \$-	\$- \$-	\$- \$-	\$- \$-		
15.	<u>6</u>			Wt	Hom.	0	-	-	-	2 5 8	-	\$- \$-	\$- \$-	\$- \$-	\$- \$-	2	
10.			1000 - 1000	Wt	Hom.	0			- 2 -			\$- \$-	\$- \$-	\$- \$-	\$- \$-		
18.	-	2	120	Wt	Hom.	0	2	122		520			ş- \$-	ş- \$-	ş- \$-	- <u>6</u>	
19.	-	<u>9</u>	0.2	Wt	Hom.	0		0.20	2	828		\$- \$-	ş- \$-	ş- \$-	ş- \$-	}%	
20.	2	27 27	-	Wt	Hom.	0	-	() -)	-	000	-	\$- \$-	ş- \$-	φ- \$-	ş- \$-	: <u> </u>	
		in this table by clicking on an				minate :	0.0	-	-	280		Lam :	\$ -	\$-	\$ -	1	# Layers
		existing name and selecting a				/ Solids :	119.8	1.000	0.832	17.55	0.00	Core:			\$-	-	Adjustment
		property from the list that pops up.			core	Total :	119.8	1.000	0.832	-		core.	Ψ	_ φ/iυ .[4		Aujusemene
		Laminate Comparison Table	Table Units:	US	-	rocar.	115.0	1.000	0.052	1							
1	22	Laminate # ->	1		1 2 2				()		×						
=		Laminate	Current Laminate														
	· ·	Thickness	1.000														in.
		Mf	0.00 %														by Wt.
		Density	10.0														lb/cu.ft
		Fiber Wt.	0.00														lb/sq.ft
		Resin Wt.	0.00														lb/sq.ft
		Laminate Wt.	0.83														lb/sq.ft
		Vf	0.00 %														by Vol.
		0º Modulus, Ex	0.01														MSI
		90º Modulus, Ey	0.01														MSI
		Poisson Ratio, PRxy	0.27														
		Shear Modulus, Gxy	0.00														MSI
			1017.0														WOT
		0º Ten. Ult. Stress	1017.0														KSI
		0º Comp. Ult. Stress	1017.0														KSI
		90º Ten. Ult. Stress	1017.0														KSI
		90° Comp. Ult Stress	1017.0														KSI
		Shear Ult. Stress 0º Flex. Ult. Stress	968.8														KSI KSI
		90° Flex. Ult. Stress	966.2 966.2														KSI
		90° FIEX. UIL SURESS	900.2														K31
												1					


DIVINYCELL H-45 1"

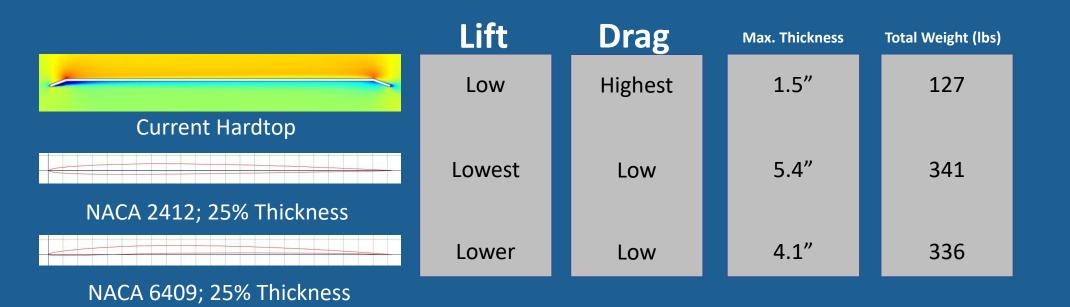
	1	Lay-up, Top to Bottom	Fiber Conter	nt	Top Up/Dn	Rotation	Fiber Wt.	Layer	Fiber	Resin	Total	Fiber	Fiber	Kesirr	Totar	daver	
=	ID	Product		vol / wt		deg.		Thickness			lb/sq.ft		\$/sq.ft	\$/sq.ft	\$/sq.ft	#	
-1	DIA	Divinycell H35 - 1"	100 %	Wt	Hom.	0	28.46	1.000	0.20	-	0.198		\$ -	\$ -	\$ -	1	
2.		and the second statement of the	-	Wt	Hom.	0	-	-	-	843	2	\$-	\$ -	\$ -	\$ -		
3.			0.40	Wt	Hom.	0	-	() -)		1943		\$-	\$ -	\$ -	\$ -	(<u>S</u>	
4.		0	-	Wt	Hom.	0	-		· · · · · · · · · · · · · · · · · · ·	2 - 5		\$-	\$ -	\$ -	\$ -	· 6	
5			1. - 1.	Wt	Hom.	0	-	-		0.00	-	\$-	\$ -	\$ -	\$ -	6 8	
6				Wt	Hom.	0	- 1					\$-	\$ -	\$ -	\$ -	1 8	
7			1000 C	Wt	Hom.	0					-	\$-	\$-	\$ -	\$ -		
8			623	Wt	Hom.	0	12	8228	2	828	2	\$-	\$ -	\$ -	\$ -		
9			5 <u>0</u> 5	Wt	Hom.	0	2	822	12	1223	2	\$-	\$ -	\$ -	\$ -		
10	<u> </u>		0.25	Wt	Hom.	0	12	9323	14	84-8	-	\$-	\$ -	\$ -	\$ -		
11.		8 	040	Wt	Hom,	0		(inc.)		343	1 G 1	\$-	\$ -	\$ -	\$ -	. 20	
12		10		Wt	Hom.	0	-		-	2 - 2	-	\$-	\$-	\$ -	\$ -		
13				Wt	Hom.	0	-	-	-	2-0	-	\$-	\$-	\$-	\$ -	f - 81	
14				Wt	Hom.	Ō	-		- 1	1.00	-	\$-	\$ -	\$ -	\$ -	1 8	
15			1 10 ⁻⁰ 0	Wt	Hom.	Ō	-		-	-	-	\$-	\$-	\$ -	\$ -		
16			120	Wt	Hom.	0	12	100	2	828	1 2 1	\$-	\$ -	\$ -	\$ -		
17			1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 - 1920 -	Wt	Hom.	Ō	2	522	<u> </u>	122	1 2 1	\$-	\$ -	\$ -	\$ -		
18			0.45	Wt	Hom,	Ō	-	8. 4 .	<u></u>	84.8	1 14 1	\$-	\$-	\$-	\$ -		
19			() -)	Wt	Hom.	0	-	-	-	040	-	\$-	\$ -	\$ -	\$ -	1 22	
20.		0	(-).	Wt	Hom.	0			8 			\$-	\$ -	\$ -	\$ -	s. 68.	
	0	in this table by clicking on an			La	aminate :	0.0		8 	2-3	0.20	Lam :	\$ -	\$ -	\$ -	1	# Layers
		existing name and selecting a			Core	/ Solids :	28.5	1.000	0.198			Core:	3 4 3 2 Y 4 4 4 4		\$ -	2 X	Adjustment
		property from the list that pops up.				Total :	28.5	1.000	0.198]		·	
		Laminate Comparison Table	Table Units:	US	-					1							
		Laminate # ->	1		1 20 20	<u>i</u>	1		§§		2 3			1	1	1	
		Laminate	Current Laminate														
		Thickness	1.000														in.
		Mf	0.00 %														by Wt.
		Density	2.4														lb/cu.ft
		Fiber Wt.	0.00														lb/sq.ft
		Resin Wt.	0.00														lb/sq.ft
		Laminate Wt.	0.20														lb/sq.ft
		Vf	0.00 %														by Vol.
		0º Modulus, Ex	0.01														MSI
		90º Modulus, Ey	0.01														MSI
		Poisson Ratio, PRxy	0.27														
		Shear Modulus, Gxy	0.00														MSI
		0º Ten. Ult. Stress	1017.0														KSI
		0º Comp. Ult. Stress	1017.0														KSI
		90º Ten. Ult. Stress	1017.0														KSI
		90° Comp. Ult Stress	1017.0														KSI
		Shear Ult. Stress	600.0														KSI
		0º Flex. Ult. Stress	966.2														KSI
		0º Flex. Ult. Stress 90º Flex. Ult. Stress	966.2 966.2														KSI KSI

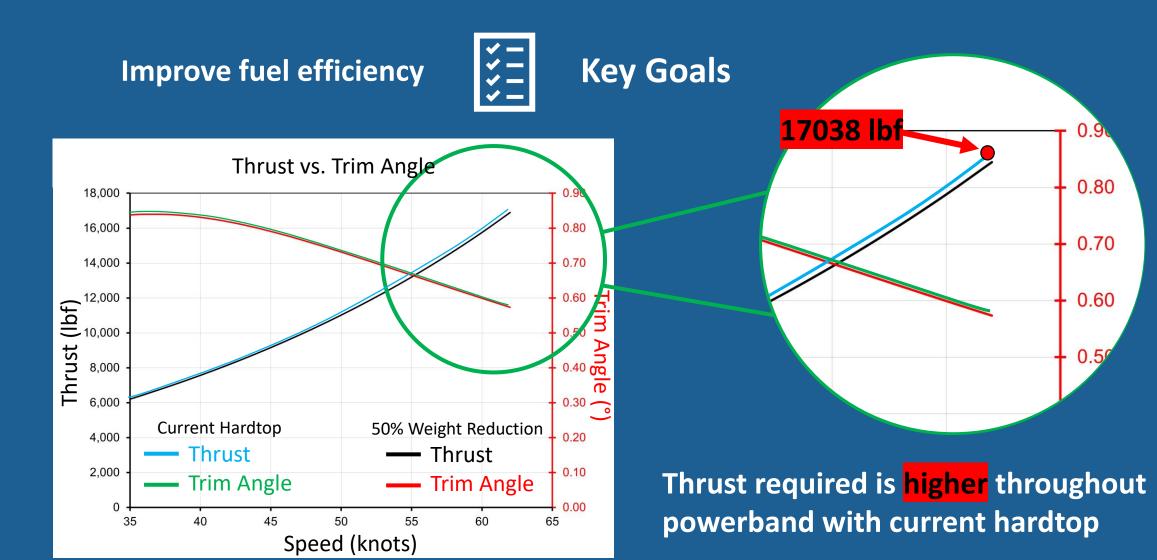
	A	В	С	D	E	F	G	Н		J	К	L
1										cL	@ 0 deg	@ 5 deg
2	LIFT		Flat Plate	2412	NACA 6409	EPPLER 58				Flat Plate	0	0.7
3	0 deg	35	0	408 N	1135 N	1536 N				NACA 2412	0.2442	0.8089
4	0 deg	70	0	1632 N	4540 N	6146 N				NACA 6409	0.679	1.1928
5	5 deg	35	1170 N	1352 N	1994 N	2239 N				EPPLER 58	0.9192	1.3395
6	5 deg	70	4680 N	5409 N	7975 N	8956 N						
7												
8	DRAG		Flat Plate	2412	NACA 6409	EPPLER 58						
9	0 deg	35	0	9.5 N	12 N	10 N						
10	0 deg	70	0	38 N	47 N	40 N		A = 11.148 m^2		cD	@ 0 deg	@ 5 deg
11	5 deg	35	84 N	13 N	13 N	24 N		V = 15.6464 m/s		Flat Plate	~0	0.05
12	5 deg	70	334 N	54 N	54 N	96 N		V = 31.2928 m/s		NACA 2412	0.00568	0.00804
13								rho = 1.225 kg/m^3		NACA 6409	0.007	0.0079
14	We are usi	ng L = (1/2)*(cL)*rho *	V * V * A				rho is STP		EPPLER 58	0.0059	0.01428
15	We are usi	ng D = (1/2	2)*(cD)*rho	* V * V * A								



John Karamitsanis

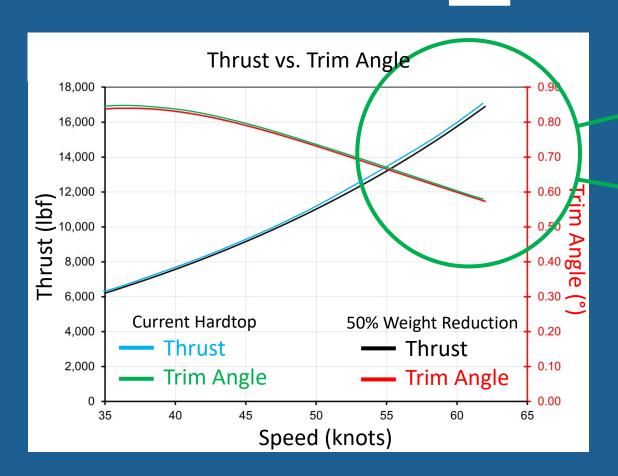
83


John Karamitsanis

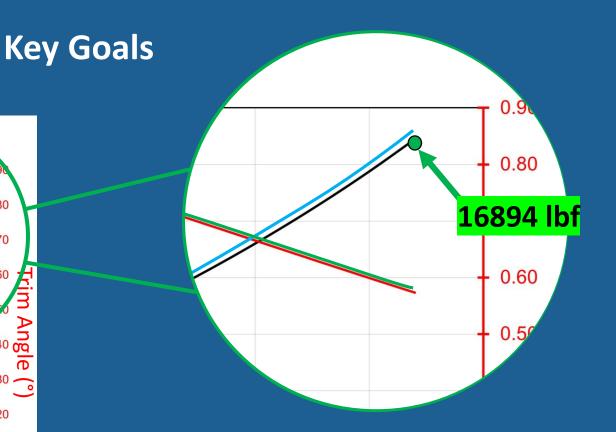


John Karamitsanis

John Karamitsanis



John Karamitsanis



Improve fuel efficiency

*** * ***

Thrust required is lower throughout powerband with lighter hardtop i.e. <u>Fuel is saved</u>

John Karamitsanis

Thrust Calculations – 4 ft CoG

INPUT	a				0				eadsheet was written by Dingo Tweedie, October 2004.
	1 11 FIAL	1000	10.00	-	WP/r	10.100	100020200		blad werd deur Dingo Tweedie, oktober 2004, geschreven.
<u>Hull</u>	Length of Waterline	L _{WL} B	40.00		=		metres	Versie 1.	.2.1
	Beam VCG	VCG	11.08 4.00		=		metres metres		
	Displacement	A	20.000			9,072			
	Deadrise @ Transom	βτ	10.00	0	-	9,012	ĸġ		
	Deadrise @ Amidships		10.00						
	Distance to Amidships	β)ο(20.000		-	C 00C	metres		
	Distance to Amidships	L)0(0	0.000		-	0.090	metres		
	Angle of Thrust Line	8	0.00						
	Angle of Thitdst Line	f	0.00		=	0.000	metres		
	Minimum Speed	Vmin	6.7	kn	=	11.3	feet/s	This is th	ne minimum speed valid for this analysis
	Maximum Speed	Vmax	145.4		=		feet/s		ne maximum speed valid for this analysis
	Maximum Speed	v max	145.4	KII		243.5	leeu's		te maximum speed valid for this analysis
S/Str.	Length Overall	LOA	40.00	feet	=	12,192	metres	1	
13. S.	Maximum Beam	B _{max}	11.08	feet	=	3,378	metres		
	Moulded Depth of Hull	Z	11.67	feet	=	3.556	metres		
	Height of House	Hss	0.00	feet	=	0.000	metres		
	Breadth of House	Bss	0.00	feet	=	0.000	metres		
	Frontal Area of House	Ass	0.00	feet ²	=	0.000	m ²		
Number	Number of Propellers	N	3]					
Trim Tab	Chord	CF	1	feet	=	0.305	metres		
	Span Ratio	σ	0.333	(<=	1)				
	Deflection Angle	8	2		349				
Rudder	Chord	Crudder	0.00	feet	=	0.000	metres		
	Thickness	t	0.00	feet	=	0.000	metres		
	Area	Arudder	0.00	feet2	-	0.000	m ²		
	005000	X _c		17.50		ansom =		0 metres	(+ve fwd)
	Centrepoint	y _o				aseline :		0 metres	(+ve up)
				2					
Shaft	Diameter of Shaft	Φ_{shaft}	0.00	feet	=	0.000	metres		
	Length of Shaft & Hub	1	0.00	feet	=	0.000	metres		
	Contractint	∫ x _c	0.00	feet f	rom tr	ansom =	= 0.00	0 metres	(+ve fwd)
	Centrepoint	5	110000	feet f					

<u>it</u>	Chord Thickness	C _{strut} t	214142	feet = feet =	0.000	metres metres											
	Area	Astrut	0.00	feet ² =	0.000	m ²		****									
	o	X _c	0.00	feet from tra	ansom =	0.000	metres	(+ve fwd)									
	Centrepoint	{ y₀	0.00	feet from ba	aseline =	• <mark>0.000</mark>	metres	(+ve up)									
PUT		V	L	CG	τ	D)	1		Peff	ective		h		c _{cr}	Comments	λ
		[kn]	[ft]	[metres]	[°]	[lbf]	[kN]	[lbf]	[kN]	[ehp]	[ekW]	[ft]	[metres]	Lew.[°]	Angeli [°]		
		35	29	8.839	0.84	6,201	27.6	6,202	27.6	666	497	1.19	0.363	3.23	2.12	Note: not planing	5.663
	Go	36	29	8.839	0.84	6,459	28.7	6,459	28.7	714	533	1.19	0.363	3.08	2.04	Note: not planing	5.594
		38	29	8.839	0.84	6,996	31.1	6,997	31.1	816	609	1.16	0.354	2.83	1.90	Note: not planing	5.473
		40	29	8.839	0.83	7,566	33.7	7,567	33.7	929	693	1.14	0.347	2.60	1.77	Note: not planing	5.374
		42	29	8.839	0.82	8,172	36.4	8,173	36.4	1,053	786	1.12	0.341	2.41	1.66	Note: not planing	5.295
		44	29	8.839	0.80	8,818	39.2	8,818	39.2	1,191	889	1.09	0.332	2.24	1.56	Note: not planing	5.235
		46	29	8.839	0.78	9,505	42.3	9,506	42.3	1,342	1,001	1.06	0.323	2.09	1.47	Note: not planing	5.192
		48	29	8.839	0.76	10,237	45.6	10,238	45.6	1,508	1,125	1.03	0.314	1.95	1.39	Note: not planing	5.16
		50	29	8.839	0.73	11,017	49.0	11,017	49.0	1,691	1,262	1.01	0.308	1.83	1.32	Note: not planing	5.15
		52	29	8.839	0.71	11,847	52.7	11,848	52.7	1,891	1,411	0.98	0.299	1.72	1.25	Note: not planing	5.15
		54	29	8.839	0.68	12,732	56.7	12,733	56.7	2,110	1,575	0.96	0.293	1.62	1.19	Note: not planing	5.16
		56	29	8.839	0.65	13,675	60.9	13,676	60.9	2,350	1,754	0.93	0.283	1.53	1.14	Note: not planing	5.194
		58	29	8.839	0.63	14,679	65.3	14,680	65.3	2,613	1,950	0.91	0.277	1.45	1.09	Note: not planing	5.23
		60	29	8.839	0.60	15,750	70.1	15,750	70.1	2,900	2,164	0.89	0.271	1.38	1.04	Note: not planing	5.279
		62	29	8.839	0.57	16,894	75.2	16,895	75.2	3,215	2,399	0.87	0.265	1.31	1.00	Note: not planing	5.339

Thrust Calculations – 4.25 ft CoG

Strut

OUTPUT

44

46

48

50

52

54

56

58

60

62

29

29

29

29

29

29

29

29

29

29

8.839

8.839

8.839

8.839

8.839

8.839

8.839

8.839

8.839

8,839

0.79

0.77

0.75

0.73

0.70

0.67

0.65

0.62

0.59

0.57

<u>INPUT</u>									eadsheet was written by Dingo Tweedie, October 2004. Iblad werd deur Dingo Tweedie, oktober 2004, geschreven.
Hull	Length of Waterline	Lw	40.00	feet	=	12,192	metres	Versie 1	5
	Beam	B	11.08		2 <u>-</u>		metres		55.0
	VCG	VCG	4.25	feet	=	1.295	metres		
	Displacement	Δ	20,000	lbf	=	9,072	kg		
	Deadrise @ Transom	βт	10.00	0					
	Deadrise @ Amidships	β 10(10.00	0					
	Distance to Amidships	L)0(20.000	feet	=	6.096	metres		
		θ	0.000						
	Angle of Thrust Line	8	0.00						
	200	f	0.00	feet	=	0.000	metres		
	Minimum Speed	Vmin	6.7	kn	=	11.3	feet/s	This is th	ne minimum speed valid for this analysis
	Maximum Speed	V _{max}	145.4	kn	=	245.5	feet/s	This is th	ne maximum speed valid for this analysis
S/Str.	Length Overall	LOA	40.00		=		metres		
	Maximum Beam	B _{max}	11.08		=		metres		
	Moulded Depth of Hull	Z	11.67		=		metres		
	Height of House	H _{SS}	0.00	feet	=		metres		
	Breadth of House	Bss	0.00	feet	=	0.000	metres		
	Frontal Area of House	Ass	0.00	feet ²	=	0.000	m ²		
<u>Number</u>	Number of Propellers	N	3]					
Trim Tab	Chord	CF	1	feet	8 =	0.305	metres		
	Span Ratio	σ	0.333	(<=1)					
	Deflection Angle	δ	2						
Rudder	Chord	Crudder	0.00	feet	·=	0.000	metres		
	Thickness	t	0.00	feet	=	0 000	metres		
	Area	Arudder		feet ²	=	0.000			
	,	Xo		feet fron			0.00	metres	(+ve fwd)
	Centrepoint	4 -		feet fron				metres	(+ve up)
		yc.	0.00	leet iton	II Dasi	enne -	- 0.000	metres	(+ve up)
Shaft	Diameter of Shaft	Φ_{shaft}	0.00	feet	=	0.000	metres		
	Length of Shaft & Hub	1	0.00	feet	=	0.000	metres		
	Contractint	x _c	0.00	feet fron	n tran	som =	0.000	metres	(+ve fwd)
	Centrepoint	∫ y₀	0.00	feet fron	n has	eline =	0.000	metres	(+ve up)

Chord Thickness	Cstrut	0.00	feet = feet =		metres metres							
Area	A _{strut}	0.00	10.5 10.5 2	0.000			****					
Centrepoint	x _o		feet from tra		5155.5	metres	(+ve fwd)					
	, y₀	0.00	feet from ba	aseline =	0.000	metres	(+ve up)					
	v	L	.CG	τ	[)	1		Peff	ective		h
	V [kn]	L [ft]	.CG [metres]	۲ [°]	[lbf]) [kN]	[lbf]	- [kN]	P _{eff} [ehp]	ective [ekW]	[ft]	h
			100 C	τ [°] 0.83	1203346		[lbf] 6,221	[kN] 27.7				h
6	[kn]	[ft]	[metres]		[lbf]	[kN]			[ehp]	[ekW]	[ft]	h
Go	[kn] 35	[ft] 29	[metres] 8.839	0.83	[lbf] 6,221	[kN] 27.7	6,221	27.7	[ehp] 668	[ekW] 499	[ft] 1.19	h
Go	[kn] 35 36	[ft] 29 29	[metres] 8.839 8.839	0.83 0.83	[lbf] 6,221 6,480	[kN] 27.7 28.8	6,221 6,480	27.7 28.8	[ehp] 668 716	[ekW] 499 534	[ft] 1.19 1.18	h

8,858

9,552

10.291

11.079

11,919

12,815

13,769

14,788

15,875

17.038

39.4

42.5

45.8

49.3

53.0

57.0

61.3

65.8

70.6

75.8

8,859

9,553

10,292

11,080

11,920

12,816

13,769

14,789

15,876

17.038

39.4

42.5

45.8

49.3

53.0

57.0

61.3

65.8

70.6

75.8

1,196

1,348

1,516

1,700

1,902

2,124

2.366

2,632

2,923

3.242

893

1.006

1.131

1,269

1,420

1,585

1.766

1,964

2,182

2,419

1.09

1.06

1.03

1.01

0.98

0.96

0.93

0.91

0.89

0.87

Comments

Note: not planing

1.00 Note: not planing

λ

5.6207

5.5018

5.4039

5.3265

5.2683

5.2276

5.2031

5.1933

5.1969

5.2135

5.2417

5.2826

5.3343

5.3983

90

το

3.23

3.08

2.83

2.60

2.41

2.24

2.09

1.95

1.83

1.72

1.62

1.53

1.45

1.38

1.31

[metres] 0.363

0.360

0.354

0.347

0.338

0.332

0.323

0.314

0.308

0.299

0.293

0.283

0.277

0.271

0.265

Lew.[°] Angeli [°]

2.12

2.04

1.90

1.77

1.66

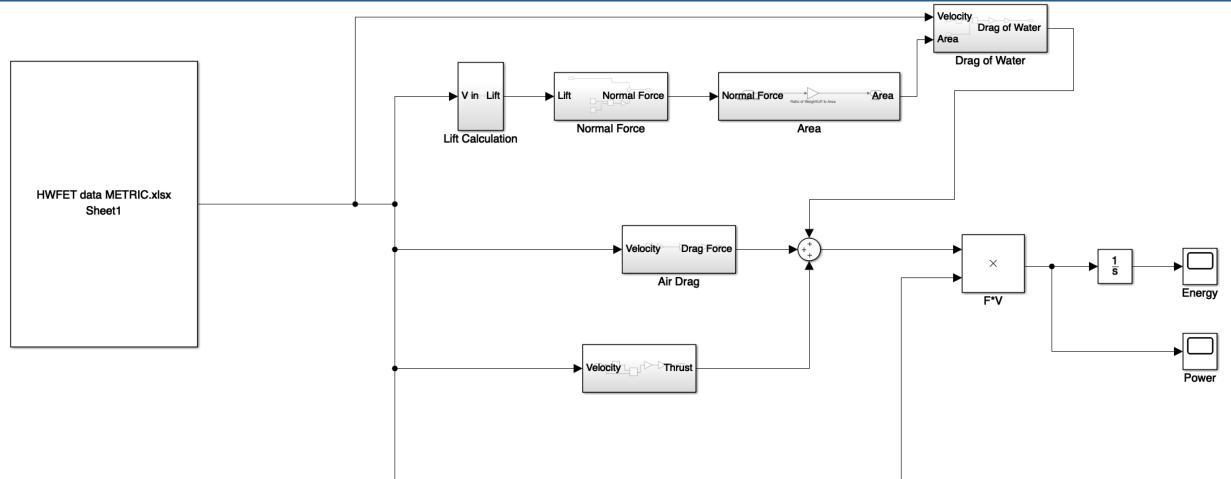
1.56

1.47

1.39

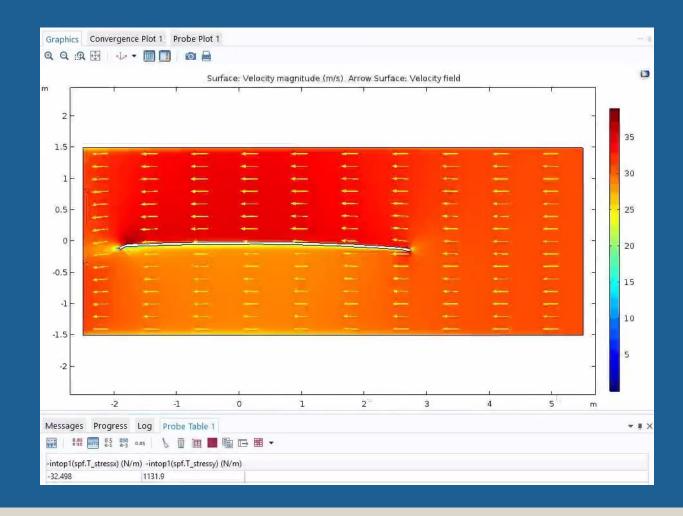
1.32

1.25

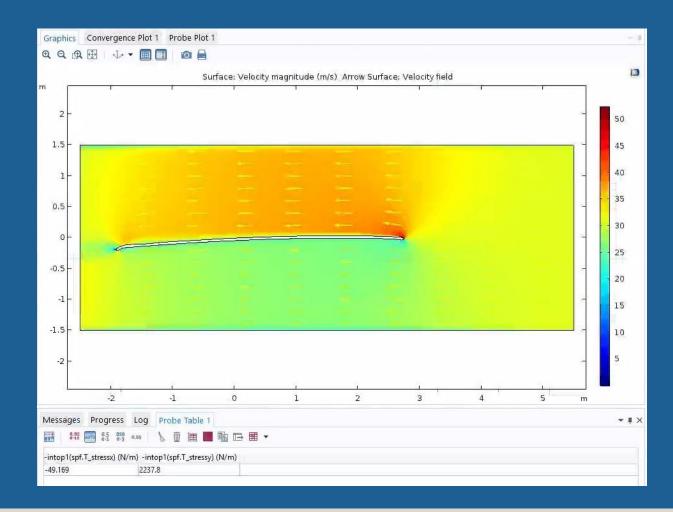

1.19

1.14

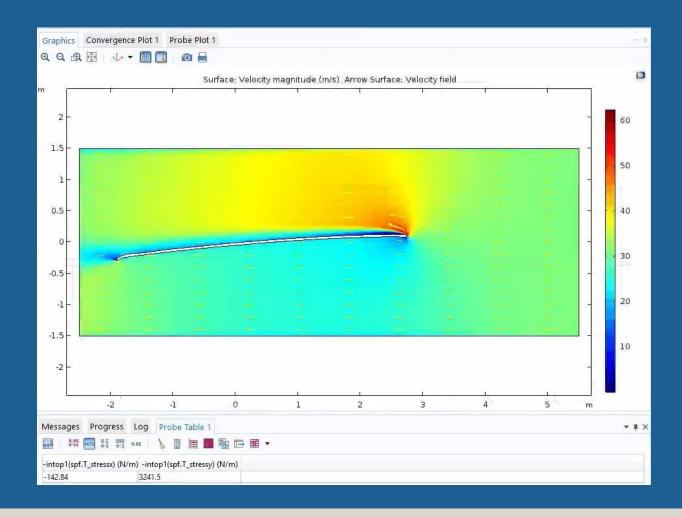
1.09

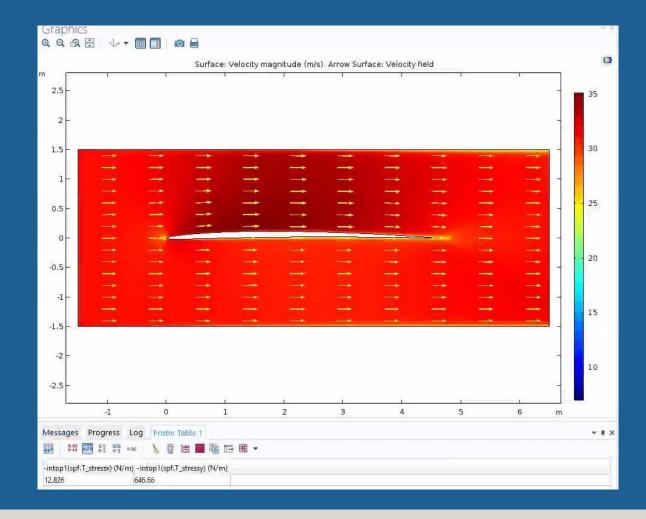

1.04

Simulink Model

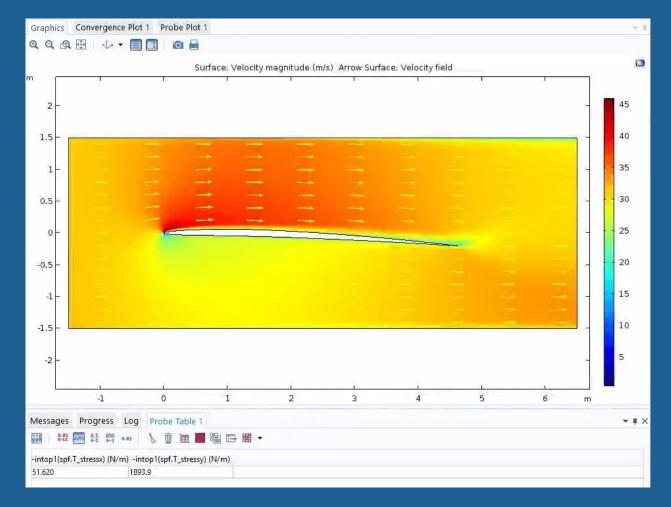

Current Hardtop Cross-Section @ $\alpha = 0^{\circ}$

Department of Mechanical Engineering

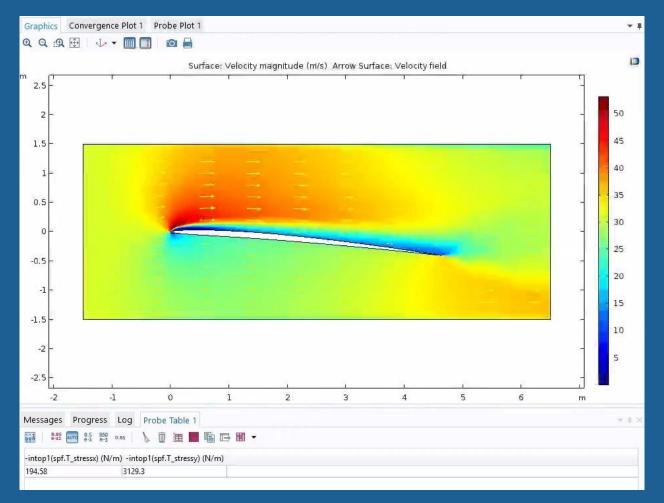

Current Hardtop Cross-Section @ $\alpha = 2.5^{\circ}$


Department of Mechanical Engineering

Current Hardtop Cross-Section @ $\alpha = 5^{\circ}$


NACA 6409 25% Thickness C.S. @ $\alpha = 0^{\circ}$

FAMU-FSU Engineering


NACA 6409 25% Thickness C.S. @ $\alpha = 2.5^{\circ}$

FAMU-FSU Engineering

96

NACA 6409 25% Thickness C.S. @ $\alpha = 5^{\circ}$

Department of Mechanical Engineering